National Repository of Grey Literature 7 records found  Search took 0.00 seconds. 
Structural determinants of regulation of surface delivery of NMDA receptors in mammalian cells
Danačíková, Šárka ; Horák, Martin (advisor) ; Bendová, Zdeňka (referee)
N-methyl-D-aspartate (NMDA) receptors are ligand-gated ion channels activated by agonist glutamate and co-agonist glycine. They play a key role in mediating the fast excitatory synaptic neurotransmission in the mammalian central nervous system. To create a functional heterotetrameric receptor, the presence of two GluN1 subunits combined with GluN2 or GluN3 subunits is necessary. Previous studies confirmed the importance of M3 transmembrane helix and extracellularly localized cysteines in regulation of surface expression of functional NMDA receptors. The aim of my thesis is to elucidate an influence of clinically relevant mutations in M3 transmembrane helix and the role of all known cysteines that form disulphide bonds on surface delivery of NMDA receptor expressed in heterologous monkey kidney fibroblasts cell culture (COS-7). Using molecular biology methods, immunocytochemistry and microscopy I found that the clinically relevant mutations M641I and Y647S in GluN1 subunit and also the mutations of particular cysteines forming disulphide bonds caused substantial decrease of surface expression of NMDA receptors. Furthermore, I discovered that the effect of mutated GluN1 subunits on decrease of surface expression depends on the subunit composition. The contribution of my results lies in elucidating the...
Studies on interactions between natural killer cell lectin receptors and their protein ligands.
Hernychová, Lucie ; Novák, Petr (advisor) ; Drbal, Karel (referee)
NK cells are innate lymphocytes which constitute the first line of organism's defence against infections through their receptor system. These cells represent an important part of antiviral and antitumor immunity, they also play a role in transplant immunity, autoimmunity and reproduction. This diploma thesis inquires into the structure of the transmembrane receptor NKR-P1B of mouse NK cells and the interaction with its ligand Clr-b. The aim was to prepare the expression vector coding the ligand-binding and whole extracellular region of the receptor NKR-P1B and to optimize its production and refolding in vitro. Purified protein samples were analyzed by size-exclusion chromatography, electrophoresis and mass spectrometry. Interaction between NKR-P1B and Clr-b proteins was tested using biophysical (size-exclusion chromatography and surface plasmon resonance) and biological methods (labelling of cellular sample with NKR-P1B proteins marked with fluorescent dye). In vitro binding experiments have not confirmed mutual interaction between NKR-P1B and Clr-b despite the prepared proteins binding to the bone marrow cells.
Differential discovery of protein features using tandem mass spectrometry
Wybitul, Evžen ; Kratochvíl, Miroslav (advisor) ; Pluskal, Tomáš (referee)
Disulphide bonds are crucial to correct protein folding, and heavily influ- ence protein function. Tandem mass spectrometry protein analysis is often used for the determination of disulphide bond positions, in combination with manual or computational interpretation methods. In this thesis we devise a program for automatic disulphide bond characterization called Dibby. Dibby identifies protein fragments in the fragmentation spectra, and uses the iden- tified fragments to determine which cysteines were connected in the protein. The identification algorithm is able to identify even complex fragments with multiple disulphide bonds that are often missed by other methods. To re- duce the fragment search space, we employ divide and conquer and branch and bound techniques. We evaluate Dibby on both measured and in-silico generated datasets, and find that it correctly identifies large portion of the present disulphide bonds with minimal manual interventions. 1
Structural determinants of regulation of surface delivery of NMDA receptors in mammalian cells
Danačíková, Šárka ; Horák, Martin (advisor) ; Bendová, Zdeňka (referee)
N-methyl-D-aspartate (NMDA) receptors are ligand-gated ion channels activated by agonist glutamate and co-agonist glycine. They play a key role in mediating the fast excitatory synaptic neurotransmission in the mammalian central nervous system. To create a functional heterotetrameric receptor, the presence of two GluN1 subunits combined with GluN2 or GluN3 subunits is necessary. Previous studies confirmed the importance of M3 transmembrane helix and extracellularly localized cysteines in regulation of surface expression of functional NMDA receptors. The aim of my thesis is to elucidate an influence of clinically relevant mutations in M3 transmembrane helix and the role of all known cysteines that form disulphide bonds on surface delivery of NMDA receptor expressed in heterologous monkey kidney fibroblasts cell culture (COS-7). Using molecular biology methods, immunocytochemistry and microscopy I found that the clinically relevant mutations M641I and Y647S in GluN1 subunit and also the mutations of particular cysteines forming disulphide bonds caused substantial decrease of surface expression of NMDA receptors. Furthermore, I discovered that the effect of mutated GluN1 subunits on decrease of surface expression depends on the subunit composition. The contribution of my results lies in elucidating the...
Antimicrobial peptides isolated from the venom of hymenopterous insect
Monincová, Lenka ; Čeřovský, Václav (advisor) ; Macek, Tomáš (referee) ; Fusek, Martin (referee)
Rapid development of bacterial resistance and multiresitance to conventional antibiotics has resulted in an intensive search for alternative antimicrobial agents. Antimicrobial peptides (AMPs) belong to promising anti-infective candidates since they do not development bacterial resistance. They kill microbes by disturbing or permeabilizing the cytoplasmic membrane, or may target putative key intracellular compartments. Their advantages include fast action and selectivity between prokaryotic and eukaryotic cells. We have isolated several novel AMPs from the venom of wild bees: halictines (HAL-1 and HAL-2) from Halictus sexcinctus, lasiocepsin (Las) from Lasioglossum laticeps and macropin (MAC-1) from Macropis fulvipes. They are active against Gram-positive and Gram- negative bacteria and against yeast Candida albicans. While halictines and macropin have moderate hemolytic activity, Las shows no hemolytic activity. A novel AMP was isolated also from the mucus of Xiphydria camelus. This AMP belongs to the category of insect defensins. It contains 55 amino acid residues, three disulphide bridges and its C-terminus is amidated. CD and NMR studies of HAL-1, HAL-2 and MAC-1 revealed propensity to form amphipathic α-helical structure in the presence of sodium dodecyl sulfate or trifluoroethanol. For the...
Studies on interactions between natural killer cell lectin receptors and their protein ligands.
Hernychová, Lucie ; Novák, Petr (advisor) ; Drbal, Karel (referee)
NK cells are innate lymphocytes which constitute the first line of organism's defence against infections through their receptor system. These cells represent an important part of antiviral and antitumor immunity, they also play a role in transplant immunity, autoimmunity and reproduction. This diploma thesis inquires into the structure of the transmembrane receptor NKR-P1B of mouse NK cells and the interaction with its ligand Clr-b. The aim was to prepare the expression vector coding the ligand-binding and whole extracellular region of the receptor NKR-P1B and to optimize its production and refolding in vitro. Purified protein samples were analyzed by size-exclusion chromatography, electrophoresis and mass spectrometry. Interaction between NKR-P1B and Clr-b proteins was tested using biophysical (size-exclusion chromatography and surface plasmon resonance) and biological methods (labelling of cellular sample with NKR-P1B proteins marked with fluorescent dye). In vitro binding experiments have not confirmed mutual interaction between NKR-P1B and Clr-b despite the prepared proteins binding to the bone marrow cells.
Struktura a funkce rekombinantního P2X4 receptoru
Rokič, Miloš ; Zemková, Hana (advisor) ; Vlachová, Viktorie (referee) ; Bendová, Zdeňka (referee)
4 Abstract Purinergic P2X receptors are membrane ion channels activated by extracellular ATP. There are seven isoforms of mammalian P2X receptors designated as P2X1-7, which according to their structure represent a specific family of ligand gated ionic channels, with extraordinary structural/functional properties. The P2X receptor consists of three subunits and each subunit has two transmembrane domains. Crystalographic data demonstrate that ionic channel pore is situated between the second transmembrane domains. Crystal structure of P2X4 receptor from the zebrafish (Danio rerio) is available in both open and closed state of the channel and the exact structure of ATP binding site is solved. The aim of this thesis was to study the structure-function relationships in a model of recombinant P2X4 receptor of the rat. By employing the point mutagenesis and electrophysiological recording, the functional importance of conserved cysteine residues in the ectodomain and amino acid residues which form the extracellular vestibule was investigated. All ten cysteins were substituted one by one with alanine or threonine and ATP-induced currents were measured from HEK293T cells expressing wild type (WT) and mutated P2X4 receptors. The results indicate that C116A, C126A, C149A and C165A mutations disrupt two disulfide bonds...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.